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The Ising model on a Cayley tree displays a peculiar (continuous order) phase 
transition with zero long-range order at all finite temperatures. When one studies 
expection values of spins far removed from the surface (which contains a finite 
fraction of the total number of spins in the thermodynamic limit), however, one 
obtains the so-called Bethe approximation. Here we study such a local descrip- 
tion by setting up a simple recurrence relation for successive shell magnetiza- 
tions far removed from the surface. In the ferromagnetic case the local magne- 
tization is a fixed point of the iterative transformation, while in the anti- 
ferromagnetic case the fixed point bifurcates to a two-cycle of the transforma- 
tion (for low temperatures and fields) giving rise to local sublattice magnetiza- 
tions. In both cases, local thermodynamical properties are obtained by integra- 
tion. 

KEY WORDS: Ising model; Cayley tree; phase transition; iteration; fixed 
point; bifurcation; ferromagnetic; antiferromagnetic. 

1. I N T R O D U C T I O N  

A Cayley  tree is a la t t ice (or graph)  on which no  closed pa ths  can  be 
generated.  The  s implest  vers ion with two shells a n d  coord ina t ion  n u m b e r  3 

is shown in Fig. 1. 
The  Is ing mode l  on such lat t ices has received much  a t t en t ion  and  it is 

of ten c la imed  a n d  widely  bel ieved that  the Bethe a p p r o x i m a t i o n  becomes  
exact  for  the " inf in i te"  Cay ley  tree. If, however,  one treats the p rob l e m in 
the accep ted  stat is t ical  mechan ica l  fashion,  by  first cons ider ing  the finite 
la t t ice and  then p roceed ing  to the t h e r m o d y n a m i c  limit, one does  not  
recover  the Bethe approx ima t ion .  Ins tead,  one ob ta ins  a pecul ia r  type  of 
phase  t ransi t ion with a s ingular  free energy (~'2) bu t  with zero long-range  
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Fig. 1. 
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Two shells of a Cayley tree with coordination number 3. 

order at all finite temperatures. O) This phenomenon may be attributed to 
the fact that in the thermodynamic limit a finite fraction of the sites on a 
Cayley tree lie on the surface. In order to avoid such peculiarities one must 
eliminate surface effects by considering local properties of sites, or groups 
of sites, in the interior of the lattice and far removed from its surface. This 
program was carried through by Runnels (4) for the hard repulsive lattice 
gas on a Cayley tree with coordination number 3. He showed that if 
"surface effects are eliminated" one obtains the quasichemical equation of 
state (the lattice gas version of the Bethe approximation) but only when the 
activity is strictly less than 4. He also foreshadowed future work on the 
nature of the transition when surface effects are not eliminated. 

Our purpose here is to generalize the work of Runnels by considering, 
in spin language, the nearest-neighbor Ising model on a Cayley tree with 
coordination number z, for both ferromagnetic and antiferromagnetic 
interactions. 

What we obtain in effect is an iterative scheme of the form 

m i = f ( m i _ l )  , i =  1 , 2 , . . . ,  N (l.1) 

for computing the magnetization per spin m i in the ith shell from the 
surface of the lattice, in terms of m i_ L. In the ferromagnetic case the mi's 
converge to the (stable) fixed point m* of (1.1) 

m* = f ( m * )  (1.2) 

which may be interpreted as a local magnetization per site. Alternatively, 
one can eliminate surface effects by defining the local magnetization to be 

lim n -  1 k mi (1.3) 
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which also equals m* when the rn~ converge to the fixed point. In any event 
the local magnetization so obtained corresponds to the Bethe approxima- 
tion and by appropriate integration with respect to the magnetic field, as 
shown in Section 4, one obtains local thermodynamic quantities that also 
agree with the Bethe approximation. 

The novel feature in the antiferromagnetic case is that when one 
makes the transition from ferromagnetic to antiferromagnetic coupling the 
fixed point of (1.1) bifurcates to a stable two cycle (m+, m_ ) given by 

m + = f ( m _  ) and m_ = f ( m  + ) (1.4) 

for temperature and magnetic field below certain critical values. In this 
case m+ and m_ have the obvious interpretations as sublattice magnetiza- 
tions. The local magnetization (1.3), however, now becomes 

lim n -  1 ~ mi = 1 , - ~  ~- (m+ + m_ ) (1.5) 
i = 1  

and all of these expressions agree with the appropriate antiferromagnetic 
Bethe approximation/s) 

In the following section we formulate the general Ising problem on a 
Cayley tree and derive the iteration scheme (1.1) for shell magnetizations�9 
Local magnetizations are derived in Section 3 for both ferromagnetic and 
antiferromagnetic interactions, and in Section 4 these expressions are 
integrated to obtain corresponding local free energies. We conclude in 
Section 4 with a brief discussion of the "classical limit" z ~ oe. 

2. FORMULATION 

For the general lattice with coordination number z, we start from a 
central spin o 0 and label spins in successive shells s = 1 , 2 , . . . ,  N by 
ai,,i2 .. . .  e~, i 1 = 1 , 2  . . . .  , z  and i k = l , 2  . . . . .  z - 1  for k = 2 , . . . , s .  The 
special case N--- 2 and z = 3 is shown in Fig. 1. 

For arbitrary nearest neighbor couplings in a uniform magnetic field 
H, the interaction energy is given by 

E ( o ) = - -  JO, i loOOi l -  ~ Jll,tl i ~  ~ i , 2 . . . .  
ii = 1 

i i = l  i 2 = 1  

- H ( ~ 1 7 6  + i l ~ l  

il = 1 i2. = 1 

z - - I  

�9 " " Z J i l l 2 . . .  i~ i,ili2 . . -  !~oiti2...  i~ i~ . , .  is 
i s ~ l  

z - I  

�9 " " 2 Ji,i2 iN , iii2 " O ' i  �9 O. .  �9 . . . .  , . 1N 1 1 2 . . . I N - I  l l l 2 . . . t  N 

i N = I  

z z z - I  z - - 1  \ 

~ Oi + ' ' '  "~- 2 ~ ' ' '  2 0 i l i 2 . . . i u  ) 
i i = 1  i2=1 i N = I  

(za) 
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Separating off the central spin and those in the first shell, we can write 
the partition function as 

ZN = X exp( - fiE ( o }) 
{o} 

--= X ~,  f i  exp (B%+ Ko, i,%%)Yi'(oi,) (2.2) 
o0=_+1 { % = _ + 1 } i t = 1  

which reduces to 

Z,V= I-I [ Y i (1)Y ' ( - -1)]  1/2 
i=1  

x e B I-I 2c~ + X,) + e -~ I I  2c~ - X,) (2.3) 
[ i = l  i=1  

where 

Ko,, = flJo,,, B = flH (2.4) 

and X, is defined by 

e 2x, = Y ' ( 1 ) / Y ' ( -  1) (2.5) 

If we now separate off the first shell in the reduced partition function 
Yi(o) defined by (2.1) and (2.2) and repeat the above steps shell by shell we 
obtain the general expression for the partition function (s) 

N 

ZN = I I  T, (2.6) 
s = l  

where 
z f i  

T, = e B I-I 2 c~ + Xi) + e - 8  2c~ Xi) 
i=1  i=1  

and (s > 1) 

i i=1  ,2=1 

z - 1  

I-I {2cosh(K,....i,_,,i~ ...,, + Xi .. . .  ,,) 
/ ,=1 

(2.7) 

x 2 c o s h ( < , . . . , , _ , , ,  . . . .  , , -  X, . , . . . , , )}  '/2 (2.8) 

with the Xi,.. ' i, defined recursively by 

2--1 

X i . . . .  i =  B + ~,  artanh[(tanhKi~...i,.i,...i.+~)(tanhXi .... i..~)l (2.9) 
i , + ~  = 1 

Having successively removed all shells we are left with the boundary 
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condition, 

y i , . . . i~ (o  ) = e B o  or X i ... .  i ~ = B  

Specializing now to the equal coupling case 

~ f l J i ~  . . . i , , i  I . . l ~ +  E K i  . . . i s , i  I . . . t s + t  

and defining recursively 

L1 = Xi~i2... i~ = B 

L k +  1 = B + (z  - 1) ar tanh(tanh Ktanh L k )  , 

(2.10) 

= K ( 2 . 1 1 )  

(2.12) 

k = l , 2  . . . . .  N - 1  

(2.13) 

we obtain from the above 
N - - I  

ZN = I I  [ 4 c o s h ( K +  L k ) c o s h ( K -  Lk)] z(z-1)N-~/2 
k = l  

x { e B [ 2 c o s h ( K +  LN)]Z+ e - B [ 2 c o s h ( K  - LN)] z} (2.14) 

The number of spins in shell s is clearly z ( z -  1) s-I so the total 
number of spins in the N shell lattice is 

N 

p ( N )  = 1 + • z ( z  - 1) ' - 1 =  [ z ( z  - 1) N - 2 ] / ( z  - 2) (2.15) 
s = [  

It follows that in the thermodynamic limit the free energy per spin + is 
given by 

- fi@ = l i r a  v ( N )  - l log Z N 
N - - ~  

= [ ( z -  2 ) /2 ]  ~] ( z -  1) -k log[4cosh(K + L k ) c o s h ( K -  Lk)] 
k = l  

(2.16) 

A detailed analysis of this expression has been given by Mtiller- 
Hartmann and Zittartz. (J) Notice in particular, that when B = 0, all L k = 0 
from (2.13), and (2.16) reduces to the one-dimensional Ising model expres- 
sion. (6) In fact, this follows easily from (2.2) by summing first over spins on 
the boundary, noting that for a boundary spin o and its neighboring spin o' 
in the ( N -  1)th shell, 

e x ~ 1 7 6  for o ' = l  or - 1  (2.17) 
~ =  -1- 1 

Repeated application of (2.17) to spins in shells N - 1,N - 2 . . . . .  1 gives 
the stated result. 
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Our aim here is to maintain the boundary condition L t = B > 0 and 
investigate the behavior of shells deep inside the lattice. In particular, the 
expectation value of the central spin is easily found by the above methods 
to be given in general (s) by 

( 0 0 )  = ZN-12 aO e-BE(o} 

= tanh[ B + ~-~ artanh(tanh K~ (2.18) 

where the Xi's are obtained recursively from (2.9) and (2.10). 
In the equal coupling case we have 

(a0} = tanh[B + zartanh(tanhKtanhLu) ] (2.19) 

where L N is obtained by iterating the recurrence (2.13). 
As we will see in a moment, Lw iterates to a fixed point of (2.13) when 

K > 0 and (2.19) reduces to the Bethe approximation expression for the 
magnetization per spin. 

In order, however, to utilize the more general expression (1.3) for local 
magnetization in terms of the shell magnetizations m i, we follow Runnels (4) 
and begin with the bulk expression for the magnetization obtained from 
(2.16) as 

m( fl, B ) = ~-~ ( -  flq.,) 

_ ( z -  2) ~ ( z -  l) -k 
2 k = l  

8Lk (2.20) X [tanh(K + L k ) -  t a n h ( K -  Lk)] 3B 

where from (2.13) 

0G+t  
3B 

Defining 

and 

OL k 
- 1 + L _ ~  [tanh(K + Lk) + tanh(K - Lk) ] ~ f f  

r k = �89 [tanh(K + Lk) + tanh(K - Lk) ] 

~ L k 
Nk= rk 3B 

we obtain from (2.21) the recurrence for Nk: 

Wk+, = rk+, [1  + (z - 1)Uk] 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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yielding 

U~ = r~ + ( z  - 1)rk_lr~ + ( z  - 1)2r~_2rk_,r~ + " 

+ ( z -  1 ) k - l r l r 2 . . . r  k 

It then follows from (2.20) that 

m (  /3, B ) = ( z  - 2) ~ (z - 1)-kPk 
k = l  

where 

(2.25) 

and 

(2.26) 

where 

m k = b k + rkbk+l  + rkrk+ l b k + 2  + rkrk+ l r k + 2 b k + 3  + �9 . . 

= bk + rkm~+ I (2.30) 

Equation (2.29) can also be obtained from the expression for m in 
terms of a weighted sum of shell magnetizations. That is, for the finite 
lattice, 

N 

m N ( / 3 ,  B ) = Iv(N)]  -J ~ r s ( O ) s  (2.31) 

u s = z ( z  - 1) ~-~ (2.32) 

is the number of spins in shell s from the central spin, (o>, symbolically 
denotes the average magnetization per site in shell s, and v(N) is the total 
number of spins. Proceeding to the thermodynamic limit N-~ oo one 
obtains (2.29) where m~ is now the average magnetization per site in shell k 
from the surface. What does not follow straightforwardly in this more 
direct approach is the recurrence (2.30) for shell magnetizations. 

The "local magnetization" is now defined by 

m*(/3, B ) = lim n -L ~ mk (2.33) 
n ---) ~ k = l  

where 

b k = �89 [tanh(K + Lk) - t a n h ( K -  Lk) ] (2.28) 

Using (2.25) and (2.27) and rearranging the terms in the sum (2.26) we have 
finally 

m ( f i ,  B )  = ( z  - 2) ~ (z - 1)-~mk (2.29) 
k = l  

e~ = bkN~/,'~ (2.27) 
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whenever the limit exists. From (2.30), this limit clearly depends on the 
limiting behavior of b k and r k, which in turn depend on the limiting 
behavior of L k defined recursively by (2.13). We discuss this limiting 
behavior in the next section. 

. LOCAL MAGNETIZATION 

In order to study the local magnetization we are led by the discussion 
in the previous section to consider the difference equation 

xk +t = f ( X k )  (3.1) 

where 
f ( x )  = tanh[B + (z - 1)ar tanh(x t a n h K ) ]  (3.2) 

and in terms of L k defined previously in (2.12) and (2.13), 

x k = t a n h L  k and x 0 = 0  (3.3) 

The limiting behavior of the iterates x k depends crucially on the sign of 
K as shown in Figs. 2 and 3. We consider the two cases separately and 
without loss of generality take B >/0. 

3 

? 

,.t] --- 9r 

r 

32; 

Fig. 2. Ferromagnetic state (K > 0): Iteration to a fixed point of (3.1). When B = 0, 
if(0) = (z - l)v. 
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or 

Fig, 3. Antiferrornagr~etic state (K < 0): Bifurcation to a two-cycle of (3.1). 

(i) The  Ferromagnet ic  Case  v = t a n h K  > 0 

As shown in Fig. 2, the function f ( x )  in this case is convex when x > 0 
and monotone increasing. It then follows straightforwardly that we have 
monotonic convergence from x = 0 to the fixed point x* as shown in Fig. 2. 

From (3.1) and (3.2) we have 

t anhL*  --= x* = tanh[ B + (z - 1)ar tanh(x* t a n h K ) ]  > 0 (3.4) 

and from (3.3), (2.22), and (2.28) as k--> oe, 

1 [ t a n h ( K +  L*) + t a n h ( K -  L*)]  = v(1 - x .2) 
r k --~ r* = -~ 1 - v2x .2 (3.5) 

and 

x*(1 - v 2) 
b k ~ b* = ~1 [ t a n h ( K  + L*) - t a n h ( K -  L*)]  . . . . .  1 - v ~ x  .2  (3.6) 

The local magnetization obtained from (2.30) and (2.33) is then given by 

b* x*0  + v) (3.7) 
m k --> m *  = 1 - r*  - 1 + DX . 2  

or using (3.4), 

m* -- tanh[  B + z a r tanh(vx*)  ] (3.8) 



450 Thompson 

which is precisely the Bethe approximation expression for the magnetiza- 
tion. Notice also from (2.19) that this expression is also equal to the limiting 
value of ( % )  where o 0 is the central spin. The critical temperature can also 
be seen by inspection from Fig. 2 to be given by 

(z - 1)tanh Kc = 1 (3.9) 

since when (z - 1)tanh K < 1 (K < Kc) x* ~ 0 as B -~ 0, giving zero sponta- 
neous magnetization, whereas when K > K C, lims_,0x* > 0, giving a non- 
zero spontaneous magnetization. 

( i i)  The  Ant i fer romagnet ic  Case v = tanh K < 0 

In this case f (x)  is monotone decreasing from + 1 (at - oo) to - t (at 
+ oo) and the possibility arises, as shown in Fig. 3, for x 0 = 0 to iterate to a 
2-cycle ( x .  , x  ) rather than to the fixed point x*. 

It would be amusing if this case also embodied the exotic bifurcations 
to 2"-cycles and the transition to chaos, (7) but in view of the following 
elementary lemma (which is trivial to prove) this alas, cannot occur. 

Lemma.  Suppose that x >-- y ~ f ( x )  <<. f (y)  and 

xk+ I = f(x~), k = O , l  . . . .  

Then 

(i) x2)Xo~X2k+2>-X2k and X2k+l<X2k_l, k = l , 2 , . . .  

(ii) x 2 ~ < x 0 ~ x 2 k + 2 < x z k  and x2k+1>tx2k_l, k = 1 , 2  . . . .  

Thus, when f (x)  is bounded (above and below) even and odd iterates 
form bounded monotonic sequences which converge either to the same 
limit (x*) or to one or the other member of a 2-cycle. 

From a physical point of view one would expect only sublattice 
magnetization to develop in such a simple antiferromagnetic model so the 
limitations of a 2-cycle are entirely reasonable in this case. For other 
systems with competing interactions it is possible, however, that more 
complicated and interesting bifurcation patterns will appear. (s) 

In the present case, the transition or bifurcation to an antiferromag- 
netic state takes place when the fixed point x* becomes unstable, which is 
easily seen by linearization of (3.1) to occur when 

f ' (x*) < - 1 (3.10) 

From (3.2) and the definition (3.4) of x* this amounts to 

(z - 1)[vl(1 - x .2) > 1 - v2x .2 (3.11) 

The first thing to notice is that since Ivl < 1 and x .2 < 1, this condition 
can never be satisfied at high temperatures when IKI < K c, with K c defined 
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by (3.9), for arbitrary B > 0. When tKI > K~, however, the condition (3.11) 
is satisfied for B < BE, where B E, the so-called critical field, is obtained by 
"solving" (Y4), and (3.11) satisfied as an equality. Thus at B = B c we have 
from (3.11) that 

( z  - 1) lvJ(1  - x . 2 )  = 1 - ,)2x'2 ( 3 . 1 2 )  

o r  

x , 2 =  I v t ( z -  1 ) -  1 (3.13) 
[ v l ( z  - 1)  - v 2 

Bc is then obtained from (3.4) by writing this equation in the form 

ar tanhx* = B~ - (z - 1)ar tanhlv]x* (3.14) 

yielding from (3.13) the result 

Bc = ar t anha  + (z - 1)ar tanhlvla (3.15) 

where 

a =  ] v - ~ -  i~ - vZ (3.16) 

To summarize the situation for the antiferromagnetic case we have, 
firstly, a paramagnetic phase when the x k in (3.1) iterate to the fixed point 
of f given by (3.4). This occurs when [K I < K~ and B > 0 and when 
[K] > K c and B > B~ where the critical field B~ is given by (3.15). 

When [K[ > Kc and 0 < B < B~, the x k in (3.1) iterate to a 2-cycle 
x +, x_  given by 

x+ = f ( x ~ )  = tanh[B + (z - 1 )a r t anhvx~]  (3.17) 

It then follows from (2.22), (2.28), and (2.30) that the shell magnetizations 
m k iterate to a 2-cycle, giving rise to sublattice magnetizations m + and m_ 
defined by 

m_+ = b~_ + r +  m~_ (3.18) 

where 

x .  (1  - v ~) ~ ( 1  - x ~  ) 
b_ - , r+ = (3.19) 

- 1 2 ~  - 2 z  Vx+ 1 -- _ - -  _ / . ) X +  

Solving equations (3.18) for m+ and m and using (3.19) one obtains after 
some tedious algebra the expressions 

x+_ + vx= - tanh(B + z ar tanhvx~_) (3.20) 
m+_-  1 + v x + x _  
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with the x_+ given by (3.17). These expressions agree with those obtained 
previously for the antiferromagnetic Bethe lattice. (5) 

In our terminology, the local magnetization when ]K I > K c and 
B ~ B c is given by 

' m  m*(fl, B )=  l imn  -I mk=~(  + + m  ) 
k = l  

= �89 [tanh(B + zartanhvx+ ) 

+ tanh(B + z a r t a n h v x  )] (3.21) 

In the following section we indicate how one can reconstruct a local 
free energy and derive local thermodynamic properties from the expres- 
sions given above for local magnetizations. 

4. LOCAL THERMODYNAMIC PROPERTIES 

Consider first an arbitrary lsing model with spin-spin interaction 
energy E~ {o). In the presence of an external field H = -B/ [ • ,  the parti- 
tion function for M spins is given by 

Z M ( fl, B ) = ~ e x p ( -  fiE 1 ( o })exp /z i (4.1) 
(o} = 

The free energy per spin ~( fl, B) is given in the thermodynamic limit 
by 

- f i~(  fi, B )=  tim M-'logZM( fi, B ) (4.2) 
M--~ oo 

from which all thermodynamic properties can be derived. For example, the 
magnetization is given by 

0 [ -#~(# ,B) ]  (4.3) m(#,B)= 

Suppose now that one were "given" a magnetization m(fl, B) and one 
wanted to reconstruct from it a corresponding free energy q~(fl, B). Obvi- 
ously one way of accomplishing this would be to integrate (4.3). Problems, 
however, appear with the range of integration, and for reasons which will 
become clear in a moment it is more convenient to start with auxiliary 
quantities Qra( fl, B) and ~( fl, B) defined, analogously to (4.1) and (4.2), by 

QM(fi, B) = ~,  exp(-- fiE I {o})exp B ~ (/~i - 1) (4.4) 
(o) i=1 

and 

- f14'( f l ,  B ) = l i m  M - 'log QM ( fl, B ) ( 4 . 5 )  
M ~ o o  
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Evidently, we then have from (4.1), (4.2), and (4.3) 

(4.6) m (  fl, B ) - 1 = ~-~ ( -  fi q~) 

fleo( f , B  ) = flt)( fl, B )  + B (4.7) 

and most importantly, 

- fleO( fl, m)  = - lim fir fl, B ) = - f iE 0 (4.8) 
B-~oo 

where E 0 is the limiting value ( M ~  0o) of E { a ) / M  when all spins o i are 
set equal to + 1. 

If we now integrate (4.6) from B to infinity we obtain from (4.7) and 
(4.8) the identity 

fB~ m(  fl, b) - 1] db= fi(eO( fl, B ) - ep( fl, 0o)) 

= fit)( fl, B ) + B - f E  0 (4.9) 

Now if we are given a local magnetization m*(fi ,  B)  we simply use 
(4.9) to define a local free energy t)*(fl, B )  by 

Bit)*( fl, B ) = f i e  o - B + s  m*( fl, b) - 1 ] db (4.10) 

To illustrate this procedure for reconstructing local thermodynamic 
properties, consider the ferromagnetic case, and also the paramagnetic 
phase of the antiferromagnet, of the previous section for which the local 
magnetization is given by (3.8). For convenience we write 

m*(f i ,  b) - tanh(b + za r t anhvx)  (4.11) 

where b/> 0 and x = x(b)  is the nonnegative solution of 

x = tanh[ b + (z - 1)at tanhvx] (4.12) 

In the final expression we will use x* to denote the solution of (4.12) when 
b = B. Also, since we have only nearest neighbor interactions, f iE o = 
- K z / 2  in general for a regular lattice with coordination number z, 

Consider now the integral 

I=s O-~[log2cosh(b+zartanhvx)]- l)db (4.13) 

Straightforward integration on the one hand (noting that 2 c o s h a ~ e "  as 
a ~ oe and x(b)  ~ 1 as b ~ ~ )  gives 

I = - l o g 2 c o s h ( B  + zar  tanhvx*) + z ar tanhv + B (4.14) 

On the other hand, carrying out the differentiation with respect to b in 
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(4.13) gives 

I --- fB~176 tanh(b + z artanhvx) - 1 ]  db 

f ~176 + ar tanhvx)  zv 3x db 
+ z 1 - l)2x 2 3b 

zx(1 + v)v 3x db 
= f , 7 [ m * ( e , b )  -1  Jab+ f,~ (t + ,~x~)(l -- -~x ~) a7 

K2 z [ l o g ( l  - t92x . 2 )  - l o g ( 1  + l)x .2 )  =/3+*(~ ,B)  + T + B  + 

- l o g ( 1  - v ) ]  ( 4 . 1 5 )  

where in the second step we have used (4.11) and (3.7) and in the third step 
we have used (4.10). 

Comparing (4.14) and (4.15) and noting that 

zK 2 a r t a n h v  = z log 1 + v (4.16) 
-2- '=  4 1 - - v  

we find, on rearrangement, the expression for the local free energy 

/3q~* (/3, B ) = - log 2 cosh(B + z ar tanh vx*) 

+ ~ [ -~ logo - v 2) - log(1 - ~2x.2) + logo + w %  ] 

(4.17) 

which agrees with the form for the free energy obtained in the Bethe 
approximation. O) 

Recall that this expression is appropriate for K > 0 and B > 0 and 
also for K < 0 provided IKI ~< K c and B > 0 or IKt > K~ and B > Be. In 
the truly antiferromagnetic phase [K t > K c and B < B c we rewrite (4.10) as 

/3~p*(fl, B) =;:~[m*(/3,b) - 1]db+  B~- B + qJ*(/3, Br (4.18) 

where tp*(/3,Bc) is given by (4.17) with B replaced by Be, Eq. (3.15), and 
m*(]3, b) in the integrand is given by (3.21). 

To evaluate the integral in (4.18) one proceeds exactly as above but 
now in place of (4.13) one considers the integral 

1 I ' =  f : c (  2 ~b {log2cosh[b + zartanhvx+ (b)] 

+ l o g 2 c o s h [ b + z a r t a n h v x _ ( b ) ] } -  1)db (4.19) 
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By following the steps above leading from (4.13) to (4.17) one obtains the 
expression 

/3ff * ( fl, B ) = - �89 [ log 2 cosh ( B + z ar tanh vx + ) 

+ log2 cosh(B + z ar tanhvx_ )] 

+ (z /2){  �89 log(1 - v 2) 

- 1  [ l o g ( 1 -  v2x 2 ) + l o g ( 1 -  v2x 2_ )] 

+ log(1 + vx+ x_ )) (4.20) 

where x+ and x_ are solutions of (4.17). This expression is valid for K < 0, 
IKI > K~, and B < B C. (It should perhaps be noted that when B = Bc, 
X +  ~--" X _  = X * , )  

As a final note we obtain the corresponding classical expressions by 
taking the limit z ~ oo after first normalizing the coupling constant by 
replacing J by J / z  or equivalently for large z, by replacing v = tanh K by 
K/z. 

In this limit, (4.17) and (4.18) become, respectively, 

flt)*( fl, B ) = - l o g 2 c o s h ( B  + Kx*) + Kx*2/2 (4.21) 

and 

fl~*(fl, B) = - �89 log[4cosh(B + Xx+ )cosh(B + Kx )] + Kx+ x _ / 2  

(4.22) 

where from (3.4) and (3.17) (B > 0) 

x* = tanh(B + Kx*) > 0 (4.23) 

and 

x_+ = tanh(B + KXT_ ) (4.24) 

Moreover, from (3.8) and (3.20), x* is in fact the magnetization and x+ the 
sublattice magnetizations. 

Recall that (4.21) and (4.23) are appropriate for the ferromagnet 
(K > 0) and for the paramagnetic phase ([K[ ~< K~ and B > 0 or [K[ > K c 
and B > B~) of the antiferromagnet (K < 0) and (4.22) and (4.24) describe 
the antiferromagnetic phase (K < 0, [K[ > K~ and B < Bc). 

Also, the critical values K~ and B~, from (3.9) and (YI5), are given in 
the limit z ~ o o  by (IK[ > Kc) 

K c= 1 and B ~ = a r t a n h  1 - ~  ~-~ (4.25) 
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